Logo ja.amen-technologies.com
  • オーディオ
  • エレクトロニクス
  • 埋め込み
  • ニュース
  • 力
  • ラズベリーパイ
  • オーディオ
  • エレクトロニクス
  • 埋め込み
Logo ja.amen-technologies.com
家 力
 ハウランド電流ポンプ回路
力

ハウランド電流ポンプ回路

2026
  • 基本的なハウランド電流ポンプ回路図
  • ハウランド電流ポンプのシミュレーション
  • 必要なコンポーネント
  • オペアンプICLM741
  • ハウランド電流ポンプハードウェアのテスト
  • ハウランド電流ポンプの応用
Anonim

負荷を流れる電流も負荷抵抗によって変化するため、単純な電流源は可変負荷には最適ではありません。この問題の解決策は、ハウランド電流ポンプ回路のような定電流源です。

ハウランド現在のポンプは、 MIT教授ブラッドフォードハウランドによって1962年に発明されました。それから成り、オペアンプIC負荷抵抗の値が変化しても負荷かかわらず一定の電流値を維持し、バランスのとれた抵抗ブリッジ。ここでは、Howland Current Sourceをハードウェア上に構築することにより、その基本的な動作と回路を理解します。

基本的なハウランド電流ポンプ回路図

ここで、キルヒホッフの電流の法則とオームの法則を適用することにより、出力電流が入力電流と抵抗R4を流れる電流の合計に等しいことがわかります。

i o = i 1 + i 2 i o =(V 1 – V L / R 1)+(V A – V L / R 2)…(式1)

R 1及びR 2オペアンプと、負荷電圧Vに対して非反転増幅器形成さLを。したがって、

V A =(1 + R 4 / R 3)V L …(式2)

V Aの値を式(2)から式(1)に代入します。

i o =(V 1 – V L / R 1)+((1 + R 4 / R 3)V L – V L / R 2)

ここで、i o = AV 1 – V L / R Oの値を解いて配置すると、

ここで、A = 1 / R 1

したがって、方程式からR Oを評価すると、次のようになります。

R O = R 2 /((R 2 / R 1)–(R 4 / R 3))

出力電流を負荷抵抗の出力電圧に対して一定または独立させるには、バランスブリッジ条件を達成する必要があります。

R 4 / R 3 = R 2 / R 1

ハウランド電流ポンプのシミュレーション

ハウランド回路は、負荷抵抗またはその両端の電圧の変化に対して電流を一定に維持する理想的な電流源回路です。シミュレーション動画以下では、現在の値に関係なく、Rの定数であることがわかりますL。ここでは、シミュレーションは3つの異なる値の負荷抵抗(1k、2k、3k)で3回実行されますが、抵抗の両端の電流は抵抗値に関係なく一定のままです。ここでは、すべての条件で9mAの定電流出力が得られています。

必要なコンポーネント

  • オペアンプIC– LM741
  • 抵抗器–(3.9k – 2個、1K-3個)
  • ブレッドボード
  • 9V電源
  • 接続線

オペアンプICLM741

LM741オペアンプ は、DC結合された高利得電子電圧増幅器です。8ピンの小さなチップです。オペアンプICは、反転信号と非反転信号の2つの信号を比較するコンパレータとして使用されます。オペアンプIC741では、PIN2は反転入力端子であり、PIN3は非反転入力端子です。このICの出力ピンはPIN6です。このICの主な機能は、さまざまな回路で数学演算を実行することです。

非反転入力(+)の電圧が反転入力(-)の電圧よりも高い場合、コンパレータの出力はHighになります。また、反転入力の電圧(-)が非反転端(+)よりも高い場合、出力はLOWになります。このワイヤレススイッチ回路では、LM741を使用して、LDRに手を渡すたびに、IC4017に低から高のクロックパルスを供給します。オペアンプ741の詳細については、こちらをご覧ください。

LM741のピン配列

LM741のピン配置

PIN番号

PINの説明

1

オフセットヌル

2

反転(-)入力端子

3

非反転(+)入力端子

4

負電圧供給(-VCC)

5

オフセットヌル

6

出力電圧ピン

7

正電圧供給(+ VCC)

8

接続されていません

ハウランド電流ポンプハードウェアのテスト

オームの法則によれば、負荷抵抗の値を大きくすると、その両端の電圧も変化します。ただし、理想的なソースは、負荷抵抗を流れる一定量の電流を維持する必要があります。以下は、ハウランド電流ポンプ回路をテストするためのハードウェア設定です。ここでは、9v電源はRPS(安定化電源)を介して供給されますが、9vバッテリーもテストに使用できます。ここでは、2kと3.9kの負荷抵抗で回路をテストし、デジタルマルチメータを使用して負荷の両端の電流を測定しました。下の画像に示すように、電流は両方の条件で一定のままです。

抵抗は、モーターやLEDなどのアクティブな負荷に置き換えることもできます。ハウランド電流ポンプの完全なデモンストレーションビデオを以下に示します。

ハウランド電流ポンプの応用

以下は、ハウランド電流ポンプのいくつかのアプリケーションです。

  • 他のデバイスのテスト
  • 実験
  • 生産テスト
  • バイアスダイオードとトランジスタ
  • 試験条件設定用
力

エディタの選択

74hc595シリアルシフトレジスタとラズベリーパイのインターフェース

2026

ラズベリーパイとAndroidアプリを使用した16x2液晶での音声入力

2026

nuvotonn76e003マイクロコントローラーのタイマー

2026

DIY wi

2026

さまざまな種類のセンサーとその動作

2026

TiのスマートAC / DCリニアレギュレータは、効率と電力密度の飛躍的な進歩を実現します

2026

エディタの選択

  • tl494を使用した高出力高効率バックコンバータ回路

    2026
  • 3.3vから12vの出力電圧を調整可能なxl6009を使用した降圧ブーストレギュレータ

    2026
  • クラップオンクラップオフスイッチ

    2026
  • 10進カウンタ回路

    2026
  • 230VAC主電源過電圧保護回路

    2026

エディタの選択

  • adc0804を使用したフレックスセンサーとラズベリーパイのインターフェース

    2026
  • トライアックとは:スイッチング回路とアプリケーション

    2026
  • オプトカプラー:そのタイプとDC / AC回路でのさまざまなアプリケーション

    2026
  • 節点電圧解析

    2026
  • MOSFETとは:その構造、タイプ、および動作

    2026

エディタの選択

  • オーディオ
  • エレクトロニクス
  • 埋め込み
  • ニュース
  • 力
  • ラズベリーパイ

エディタの選択

  • Chirpがデータオーバーの最初の統合を発表

    2026
  • スペース制約アプリケーション向けの高電力密度と効率を備えた3A定格tmbs整流器

    2026
  • デュアルn

    2026

エディタの選択

  • arduinoとad9833dds関数発生器モジュールを使用して独自の関数発生器を構築する

    2026
  • arduinoを使用したコンピューター制御ロボット

    2026
  • arduinoを使用した8x8マトリックスのヘビゲーム

    2026

エディタの選択

  • 8Ghzusb接続されたwi

    2026
  • Aec

    2026
  • コンパクトなアナログおよびデジタルゲートドライバICにより、設計の柔軟性が向上し、ハードウェアの複雑さが軽減されます

    2026
Logo ja.amen-technologies.com

© Copyright ja.amen-technologies.com, 2026 1月 | サイトについて | 連絡先 | プライバシーポリシー.